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Reaction diffusion with initially separated reactants: Functional integral approach

Victor Malyutin,* Savely Rabinovich, and Shlomo Havlin
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 25 September 1996; revised manuscript received 13 February 1997!

A method based on the Feynman-Kac formula is suggested to analyze the solutions of theA1B→C
reaction-diffusion system with initially separated reactants. It enables us to reproduce and improve earlier
results which were based on empirical approximations. We also roughly estimate an upper time limit for this
approach to be valid. It is possible that this limit is the applicability limit for the mean-field approach.
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Reaction-diffusion processes are of great interest for
scientific community. Numerous efforts have been made
understand their properties qualitatively as well as quan
tively. Basically, there are three approaches to deal with
problem. The microscopic one, which makes use of the fie
theoretical machinery, has been implemented for so
simple systems@1#. Other works analyze long-time behavio
of the system by means of scaling arguments~e.g., @2#!. A
different approach which is based on the analysis of me
field differential equations, known also as the reactio
diffusion equations~see, for instance,@3#!, is supported ex-
perimentally @4#. However, one should be aware that t
validity of them is limited, i.e., for long enough times the
fail. Therefore, the determination~or estimation! of this
crossover time is an important problem.

This paper suggests an approach to solve the mean-
reaction-diffusion equations with the aid of the Feynma
Kac formula @5#. Such a treatment enables one to obt
analytically the first-order correction to thereaction produc-
tion ratewhich has been previously approximated from n
merical calculations@6#. We also provide a rough time limi
for the validity of our solution. This limit becomes the va
lidity limit for the mean-field equation, provided that a ce
tain mathematical difficulty could be overcome.

We consider a reaction-diffusion system with initial
separated reactants along thex axis. Its mean-field descrip
tion is given by the following set of differential equations f
the mean local concentrations per unit lengthra,rb :

]ra
]t

5Da¹
2ra2krarb ,

~1!

]rb
]t

5Db¹
2rb2krbra ,

whereDa ,Db are diffusion constants andk is the reaction
rate constant. These equations are subject to the initial
ditions

ra~x,0!5a0H~x!, rb~x,0!5b0@12H~x!#, ~2!

*On leave from the Institute of Mathematics, Belarus Academy
Science, 11 Surganova str., Minsk, Belarus.
561063-651X/97/56~1!/708~4!/$10.00
e
to
a-
is
-
e

n-
-

ld
-
n

-

n-

wherea0 and b0 are the initial densities, andH(x) is the
Heaviside step function. It is convenient to describe reac
effects by using a dimensionless reaction parameter

«5
k

Aa0b0DaDb

. ~3!

We define dimensionless parametersa(x,t)5a0
21ra(x,t),

b(x,t)5b0
21rb(x,t), j5xAa0b0, and t5ta0b0ADaDb,

the ratio of diffusion constantsD5ADa /Db, and the ratio of
initial concentrationsr5Aa0 /b0. Then Eq. ~1! takes the
form

]a

]t
5D

]2a

]j2
2

«

r
ab,

~4!

]b

]t
5
1

D

]2b

]j2
2«rba.

Accordingly, Eq.~2! becomes

a~j,0!5H~j!, b~j,0!512H~j!. ~5!

The Feynman-Kac formula@5# enables one to rewrite th
set of equations~4! using functional integrals

a~j,t!5E
C[0,t]

expH 2
«

r E0
t

b„t,y~ t !1j… dtJ
3w„y~t!1j… m2D~dy!,

~6!

b~j,t!5E
C[0,t]

expH 2«r E
0

t

a„t,y~ t !1j… dtJ
3c„y~t!1j… m2/D~dy!,

where the functional Gaussian measuresm2D(dy), and
m2/D(dy) are defined by their first two momentsm(t)50
andCd(s,t)5d min(s,t). Hered is equal to 2D and 2/D for
the first and second equation correspondingly. The ini
functions w(j)[a(j,0)5H(j) and c(j)[b(j,0)51
2H(j)5H(2j) were defined by Eq.~5!.

Now expanding the integrand exponents in Eq.~6! in the
power series one first obtains the zeroth order which is triv
f
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a0~j,t!5E
C[0,t]

H„y~t!1j… m2D~dy!

5
1

2F11erfS j

A4Dt
D G ,

~7!

b0~j,t!5E
C[0,t]

H„2y~t!2j… m2/D~dy!

5
1

2F12erfS jAD
A4t

D G .
An important question to be addressed here is the vali

limit of this approximation. Looking at Eq.~6! one infers
that to assure the series convergence, a norm of the ope
L( f )[«r61*0

t f (t) dt should be finite for every functionf
from the space of solutions of this system. Since very little
known about this functional space, in the subsequent ana
we accept a quite natural assumption that the above m
tioned norm is bounded.

The first-order term is nontrivial and written as

a1~j,t!52
«

r EC[0,t] H E0tb0~y~ t !1j,t ! dtJ
3H~y~t!1j! m2D~dy!,

~8!

b1~j,t!52«r E
C[0,t]

H E
0

t

a0~y~ t !1j,t ! dtJ
3H~2y~t!2j! m2/D~dy!.

To get analytic expressions for further analysis we sh
use the following approximations@7#:

E
C[0,t]

H E
0

t

FS y~ t !

At D dtJH„y~t!1j… m2D~dy!

'tI 1
~1!~F !

5tF~0!a0~j,t!1t
F~1!2F~21!

3Ap
ADexpS 2

j2

4Dt D ,
E
C[0,t]

H E
0

t

FS y~ t !

At D dtJH„2y~t!2j… m2/D~dy!

'tI 2
~1!~F !

5tF~0!b0~j,t!2t
F~1!2F~21!

3ApD
expS 2

Dj2

4t D .
It can be verified by straightforward calculation that this a
proximation is exact for the first-order polynomials. It is
particular case ofgiven accuracy formulaswhich is widely
used for practical calculation of functional integrals@7#.
These formulas are an analog of the well-known Gauss i
gration formulas@8# for the usual finite-dimensional inte
grals. Thus these formulas are exact for functional poly
mials of the first, second, and so on degree correspondin
ty
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In this paper we use the formulas that are exact for the
and second degree polynomials only. Therefore, the m
properties of the Gauss integration remain valid~with some
reservations! in the functional integral case. Namely, bein
exactfor some~two, three, and so on! starting terms of the
Taylor decomposition, they usually supply a very good a
proximation for thewhole series representing a smoo
~nonoscillating! function. Therefore, the parameter of th
Taylor expansion is formally a small parameter of the pro
lem. Closer examination of the exact conditions of conv
gence can be found in@9#.

SubstitutingF by b0 anda0 @see Eq.~8!# one gets

a1~j,t!52
«t

r
a1

~1!~j,t!

52
«t

r H 14F12erfS jAD
2At

D GF11erfS j

2ADt
D G

1
1

6
AD/pFerfS AD

2 S j

At
21D D

2erfS AD
2 S j

At
11D D GexpS 2

j2

4Dt D J ,
b1~j,t!52«r tb1

~1!~j,t!

52«r tH 14F11erfS j

2ADt
D GF12erfS jAD

2At D G
1
1

6

1

ADp
FerfS 1

2ADS j

At
21D D

2erfS 1

2ADS j

At
11D D GexpS 2

Dj2

4t D J .
As we just mentioned the small parameter of our probl

is a parameter of the corresponding Taylor expansion. S
cifically, in our case it isjt21/2 and therefore our approxi
mation is expected to be good ifjt21/2!1. However, we
stress again that for our very smooth functional it gives
very good approximation in a whole range ofjt21/2. In or-
der to illustrate the whole-range accuracy of the approxim
tion made we plot, in Fig. 1,a1

(1) , b1
(1) along with a1

(2) ,
b1
(2) obtained on the basis of the formulas exact for t

second-order polynomials@7#

E
C[0,t]

H E
0

t

FS y~ t !

At D dtJH„y~t!1j… dm2D~y!

'tI 1
~1!~F !1t@F~A2!2F~1!1F~2A2!2F~21!#

3FDa0~j,t!2
jAD
4Apt

expS 2
j2

4Dt D G ,
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E
C[0,t]

H E
0

t

FS y~ t !

At D dtJH„2y~t!2j… dm2/D~y!

'tI 2
~1!~F !1t@F~A2!2F~1!1F~2A2!2F~21!#

3F 1D b0~j,t!1
j

4ADpt
expS 2

Dj2

4t D G .
Figure 1 clearly demonstrates that the deviations do

exceed several percent worth for the whole range. As we
above this sequence of approximations is convergent
then we are dealing with the Cauchy sequence. Theref
the pointwise difference between the next~third! approxima-
tion and the second one is necessary smaller than tha
tween the second and the first ones shown in Fig. 1.

We next use these results to calculate the location of
center of the reaction frontz(t). Following previous publi-
cations @2,3,6#, this quantity is defined as the position
which the local production rate

R~x,t !5a0b0ADaDb«a~x,t !b~x,t ! ~9!

has its maximum. Then, differentiating the produ
@a0(j,t)1a1(j,t)#@b0(j,t)1b1(j,t)# with respect toj,
and resolving the resulting equation, one gets in a good
proximation

z~ t !5Ap

S 1

AD
2AD D t21/21

«M

2
t1/2

2t211«N
, ~10!

whereM andN are time-independent constants which a
found to be

M5S AD
r

2
r

AD D 2
4

3pSD3/2

r
2

r

D3/2D2S 1

AD
2AD D

3S 1r 1r D ,
N5S 1

AD
2AD D S AD

r
2

r

AD D 2
2

3S 1r 1r D .

FIG. 1. Comparison plot for the first and second approxim
tions. The left panel showsa1

(1) anda1
(2) , while the right panel —

b1
(1) andb1

(2) . Solid lines are first approximation, dashed lines a
second approximation.
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This result Eq.~10! is in excellent agreement with the Tai
elbaum’set al. empirical approximation@6#.

The most interesting property of the reaction front is t
possibility of changing its direction of motion, which ha
been experimentally confirmed@6#. It is possible if
D.1, M.0 or D,1, M,0. Using the identity

D3/2

r
2

r

D3/25S AD
r

2
r

AD D SD1
1

D
21D1S 1r 1r D

3S AD2
1

AD D
one rewrites the expression forM in the form

M5S AD2
1

AD D S 1r 1r D S 12
4

3p D1S AD
r

2
r

AD D
3F11

4

3p
2

4

3pSD1
1

D D G .
From here one observes that the direction change
curs if D.1, r,1 or D,1, r.1 and 1
1(4/3p) 2(4/3p)(D11/D).0. By recovering D
we get 1

8 (3p142A(3p112)(3p24)),D, 1
8 (3p14

1A(3p112)(3p24)) or 0.33,D,3.03. This inequality is
a sufficient condition for the direction to change.

A sufficient condition for the directionnot to change is
D.1, M,0 or D,1, M.0. From the estimation

M<S AD
r

2
r

AD D P, for D.1, r,1,

M>S AD
r

2
r

AD D P, for D.1, r.1,

where P532(4/3p)2(4/3p)(D11/D), we infer that
the sufficient condition P,0 is obeyed if
D, 1

8„9p242A(9p14)(9p212)… (D,0.17) or D.
1
8„9p241A(9p14)(9p212)… (D.5.90).
The explicit expressions we obtained fora andb enable

one to make some conclusions about their validity. Name
in the vicinity of the pointjt21/250 ~where our approxima-
tion is exact! functionsa andb take the form

a'
1

2
2

t«

4r
1

t«

3rAp
erfSAD2 D 1oS j

At
D ,

b'
1

2
2

tr«

4
1

tr«

3Ap
erfS 1

2AD D 1oS j

At
D .

Thus a sufficient conditions for the solutions of system~4! to
be positive reads~for D,1)

t,
6

~3Ap24!

r

«
,

or ~for D.1)

-
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t,
6

~3Ap24!

1

r«
,

respectively, which means that aftert;k21 our approach
may not be valid.

There are two possible reasons for this failure. The fi
one is the two approximations we made in the course
calculations. However, as we demonstrated above, the
proximation made to calculate the integrals in Eq.~8! is a
very reliable one in the whole range. Moreover, it becom
exact at the point where the failure appears.

Another approximation has been done to deal with E
~6!. Its validity depends on whether the norm of opera
L( f )[«r61*0

t f (t) dt is finite or infinite on the functiona
space of solutions of system~6!. While the assumption abou
.

.
s.

-

t
f
p-

s

.
r

the bounded norm sounds very likely we cannot prove
rigorously. Then, at the moment, we cannot eliminate t
reason for certain.

However, if both the approximations are valid then t
failure should be attributed to the limitation of the mean-fie
equations~4!. In other words,t;k21 is, probably, the appli-
cability limit for the mean-field approach.

In summary, we have developed a mathematical appro
to deal with reaction-diffusion mean-field equations. It w
checked against an analytical fitting reported before.
have also estimated the applicability limit for our solutio
and discussed possible reasons for this limitation.

We are grateful to H. Taitelbaum and Z. Koza for a ca
ful critical reading. This research was partially supported
the Bi-National~Israel-US! Science Foundation.
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