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Reaction diffusion with initially separated reactants: Functional integral approach
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A method based on the Feynman-Kac formula is suggested to analyze the solutions/of BieC
reaction-diffusion system with initially separated reactants. It enables us to reproduce and improve earlier
results which were based on empirical approximations. We also roughly estimate an upper time limit for this
approach to be valid. It is possible that this limit is the applicability limit for the mean-field approach.
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PACS numbd(s): 82.20—~w, 05.70.Ln

Reaction-diffusion processes are of great interest for thevherea, and by are the initial densities, anH(x) is the
scientific community. Numerous efforts have been made tddeaviside step function. It is convenient to describe reactive
understand their properties qualitatively as well as quantitaeffects by using a dimensionless reaction parameter
tively. Basically, there are three approaches to deal with this

problem. The microscopic one, which makes use of the field- k @
. . . E= —.,
theoretical machinery, has been implemented for some rboDan

simple system§1]. Other works analyze long-time behavior

of the system by means of scaling argume(®s.,[2]). A ) . . 1
different approach which is based on the analysis of meanwe de_flgci1d|men5|0nl_ess\/p_z;ramete;$x,tz— a% ’j/%
field differential equations, known also as the reaction3(*:t)=bo pu(X.t), £=xyaghy, and 7=tagbyDaDy,

diffusion equationgsee, for instance3]), is supported ex- fth.e. ratio of dlffu3|.on constan®= D, /Dy, and the ratio of
perimentally [4]. However, one should be aware that theinitial concentrationsr = yao/bo. Then Eqg.(1) takes the
validity of them is limited, i.e., for long enough times they form
fail. Therefore, the determinatiokor estimation of this

crossover time is an important problem. ‘9_0‘: 52_0‘_ Ea,B
This paper suggests an approach to solve the mean-field aT agr 1
reaction-diffusion equations with the aid of the Feynman- (4)
Kac formula[5]. Such a treatment enables one to obtain B 1 °B
analytically the first-order correction to theeaction produc- 9r D T erpa.

tion rate which has been previously approximated from nu-
merical calculation$6]. We also provide a rough time limit Accordingly, Eq.(2) becomes
for the validity of our solution. This limit becomes the va-
lidity limit for the mean-field equation, provided that a cer- a(£,00=H(&), B(£,0)=1—H(&). (5)
tain mathematical difficulty could be overcome.

We consider a reaction-diffusion system with initially =~ The Feynman-Kac formulgs] enables one to rewrite the
separated reactants along thexis. Its mean-field descrip- set of equation$4) using functional integrals

tion is given by the following set of differential equations for
the mean local concentrations per unit lengthpy,: e
a(é,f)=fc[o & —;foﬁ(t,y(t)%) dt

dpa

—t = DaVpa=Kpaps, “ X @(y(7)+ ) pop(dy), ®
J - —er |

R B&) fqo,ﬂex')[ or | Tattym+ dt}

o _ _ XP(y(m)+ &) pop(dy),
whereD,,D,, are diffusion constants arkl is the reaction
rate constant. These equations are subject to the initial convhere the functional Gaussian measuresy(dy), and
ditions wop(dy) are defined by their first two moments(7)=0
andCy(s, ) =d min(s,7). Hered is equal to D and 2D for
pa(X,00=agH(x), pp(x,00=bg[1—H(x)], (2 the first and second equation correspondingly. The initial
functions @(§)=a(£,0)=H(§) and §(§)=p(£0)=1
—H(&)=H(—¢&) were defined by Eq5).
*On leave from the Institute of Mathematics, Belarus Academy of Now expanding the integrand exponents in Ej.in the
Science, 11 Surganova str., Minsk, Belarus. power series one first obtains the zeroth order which is trivial
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In this paper we use the formulas that are exact for the first
ao(&J):f H(y(7)+ &) uap(dy) and second degree polynomials only. Therefore, the main
ctol properties of the Gauss integration remain validth some
¢ reservationsin the functional integral case. Namely, being
=—| 1+erf )] exactfor some(two, three, and so grstarting terms of the
2 VaDr (77 Tavlor decomposition, they usually supply a very good ap-

proximation for the whole series representing a smooth

_ _ _ (nonoscillating function. Therefore, the parameter of the
Bo(&7) L[O,T]H( Y(1) =€) pan(dy) Taylor expansion is formally a small parameter of the prob-
lem. Closer examination of the exact conditions of conver-

1 f\/_ gence can be found if9].
=311~ erf \/4—7 SubstitutingF by B, and a, [see Eq(8)] one gets
An important question to be addressed here is the validity
limit of this approximation. Looking at Eq(6) one infers a,(é,7)=— ﬂa(l)(g 7)
that to assure the series convergence, a norm of the operator 1e rot
L(f)=er=1[f(t) dt should be finite for every functiofi
from the space of solutions of this system. Since very little is N 1 1 erf &b 1+ erf &
known about this functional space, in the subsequent analysis 27 2Dt
we accept a quite natural assumption that the above men-
tioned norm is bounded. 1 VD[ &
The first-order term is nontrivial and written as tgVD/mlerf —-| —=-1
6 2\ Jr
2
as(£,7)= f { f Boly(D)+ED) dt] o P 5 o e -6
\/— 4aDr7) |’
XH(y(7)+ dy),
T ,T)=—¢&lT (1) ,T)
puem=—er | HO ao(y(D) + £, dt] Pale pate
o7 1 £\D
XH(=Y(7)= ) pop(dy). R R P e W
To get analytic expressions for further analysis we shall 1 1 /
use the following approximations]: erf( ) )
6 D= \
y( ) 2
dt H(y(7)+§&) map(dy) 1 (¢ D¢
clo.] o N3 —erffl —| —=+1|| |exp ———]| |.
2D\ \r ar

~7lM(F)

F(1)-F(-1) & As we just mentioned the small parameter of our problem
=mF(0)ag(é 1)+ 7 3m VD - is a parameter of the corresponding Taylor expansion. Spe-
cifically, in our case it ist7~ %2

mation is expected to be good #fr~¥?<1. However, we
f f & dtf H(=y(r)— &) (dy) stress again that for our very smooth functional it gives a
clo,1 Jt Hap very good approximation in a whole range & 2 In or-
D der to illustrate the whole-range accuracy of the approxima-
~l3(F) tion made we plot, in Fig. 1%, B along with {?,
F(1)—F(-1) D2 B Ogtairgjed or: the _b?;;s of the formulas exact for the
= —— - second-order polynomia
TF(0)Bo(é,7)— 7 3\/7T_D ex;{ ar | poly

and therefore our approxi-

It can be verified by straightforward calculation that this ap- y(t)

proximation is exact for the first-order polynomials. It is a J { J ( ) dt} H(y(7)+ &) duap(y)
particular case ofjiven accuracy formulasvhich is widely clo.7{ Jo \/—

used for practical calculation of functional integrdlg].

These formulas are an analog of the well-known Gauss inte- ~7l{V(F)+ 7 F( V2)=F(D)+F(=2)=F(-1)]
gration formulas[8] for the usual finite-dimensional inte- £\D £

grals. Thus these formulas are exact for functional polyno- X| Dag(&7)— exg — )
mials of the first, second, and so on degree correspondingly. N 4Dt
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0.2 : ‘ This result Eq.(10) is in excellent agreement with the Tait-
elbaum’set al. empirical approximatiof6].

o B The most interesting property of the reaction front is the
possibility of changing its direction of motion, which has

0.1 been experimentally confirmed6]. It is possible if
D>1, M>0 orD<1, M<O0. Using the identity

D% r_\/B ' D+11+1+
0.0 r D¥ | r b D rrf
-10 10 -10 10

172

{3

one rewrites the expression fdt in the form

JB—\/%)(%H)(l—%)JF D _

|

r b

From here one observes that the direction change oc-
curs if D>1, r<1 or D<1,r>1 and 1
+(4/37) —(4/37)(D+1/D)>0. By recovering D
we get 3(37+4—(37+12)(37m—4))<D<3 (3w+4

Figure 1 clearly demonstrates that the deviations do not- (37 +12)(37—4)) or 0.33<D < 3.03. This inequality is
exceed several percent worth for the whole range. As we saigd sufficient condition for the direction to change.
above this sequence of approximations is convergent and A sufficient condition for the directiomot to change is
then we are dealing with the Cauchy sequence. Therefor@®>1, M<0 orD<1, M>0. From the estimation
the pointwise difference between the nékiird) approxima-

FIG. 1. Comparison plot for the first and second approxima-
tions. The left panel shows{" anda{?, while the right panel —
B and 8{?) . Solid lines are first approximation, dashed lines are
second approximation.

feoal ¥

~ 5! (F)+ 7 F(V2)~F(1)+F(=2)=F(-1)]

1 £ Dgz)
B,[)’@(f,?’)'i‘ 4\/ﬁ-ex - ? .

M=

t
%) dt] H(—y(7)— &) duyp(y)

o e iy R

4 4 1
14+ ——=—| D+ =

X

tion and the second one is necessary smaller than that be- VD
tween the second and the first ones shown in Fig. 1. M= . \/—5 P, for D>1, r<1,
We next use these results to calculate the location of the
center of the reaction fronf(t). Following previous publi-
cations[2,3,6), this quantity is defined as the position at E_L
X . M= P, for D>1, r>1,
which the local production rate r JD

R(x,t)=agbgyDDpe a(X,t) B(X,t) (9  where P=3—(4/37)—(4/3w)(D+1/D), we infer that
the sufficient condition P<0 is obeyed if
has its maximum. Then, differentiating the productp<l(9;—4—.[(97+4)(97—12)) (D<0.17) or D>
[ao(£,7)+ ay(£,7) ] Bo(£,7)+ Ba(£,7)] with respect 1, 1 4+ (O +4)(97—12)) (D>5.90).
and resolving the resulting equation, one gets in a good ap- Tpe explicit expressions we obtained ferand 8 enable

proximation one to make some conclusions about their validity. Namely,
in the vicinity of the pointér—Y?=0 (where our approxima-
(i_ \/5 sy ﬂTuz tion is exac} functionsa and g8 take the form
VD
{(t)=\/; 27 11 eN , (10) 1 7 TE (\/5 3
a~5— —+——=erfl —|+o|l =],
2 4 3rrm 2 Jr
whereM and N are time-independent constants which are
found to be 5 1 rre N e f 1 . ¢
~-——+——=rfl —=| +o| —=].
NI 4(D3’2 r 1 B 2 4 3/xr \2¢D Jr
M=|—-—|—=— ———3,2)— ——+D
ryp) 3=\ r D VD Thus a sufficient conditions for the solutions of syst@nto
1 be positive read¢for D<1)
X —+r),
6 r
T —,
1 o ) 21 (3\m—4) e
w1yt
JD r Jp) 3\r or (for D>1)
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6 1 the bounded norm sounds very likely we cannot prove it
T<—r—, rigorously. Then, at the moment, we cannot eliminate this
(3Vm—4) re reason for certain.

However, if both the approximations are valid then the
failure should be attributed to the limitation of the mean-field
Fquations(4). In other wordst~k ™! is, probably, the appli-
Fability limit for the mean-field approach.

In summary, we have developed a mathematical approach
deal with reaction-diffusion mean-field equations. It was
hecked against an analytical fitting reported before. We

very reliable one in the whole range. Moreover, it becomei . ST :
y g ave also estimated the applicability limit for our solutions

exact at the point where the failure appears. d di d iol for this limitati
Another approximation has been done to deal with Eq.an IScussed possible reasons for this imitation.

(6). Its validity depends on whether the norm of operator We are grateful to H. Taitelbaum and Z. Koza for a care-
L(f)=er=1ff(t) dt is finite or infinite on the functional ful critical reading. This research was partially supported by
space of solutions of syste(@). While the assumption about the Bi-National(lsrael-US Science Foundation.

respectively, which means that afterk™! our approach
may not be valid.

There are two possible reasons for this failure. The firs
one is the two approximations we made in the course o
calculations. However, as we demonstrated above, the a?—

. K . . . 0
proximation made to calculate the integrals in E8). is a
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